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EFFECT OF WARPING RIGIDITY ON STABILITY OF A BAR
UNDER ECCENTRIC FOLLOWER FORCE*

s, NEMAT-NASSERt and P. F. TSAIt

University of California, San Diego

Abstract~Stability ofa cantilever under an eccentrically applied follower-end-Ioad is considered. It is shown that
a bar with warping rigidity may lose stability by bending-torsional flutter, bending-torsional buckling, transverse
flutter, or torsional buckling depending on the eccentricity and other parameters. In particular, it is found that
the bending-torsional-flutter-load can be considerably reduced when the bar has warping rigidity. The influence
of the internal damping forces on the flutter loads is also assessed.

1. INTRODUCTION

STABILITY of a cantilever subjected at its free end to an eccentric follower force was recently
considered by Lin et al. [lJ who neglected the effects of warping rigidity and internal
dissipative forces and found that, for all non-zero values of eccentricity, the bar loses
stability by bending-torsional f1utter§ only. For zero eccentricity, on the other hand,
torsional buckling II [2J or transverse flutter [3J may occur. It was conjectured in [lJ that
warping rigidity may induce additional modes of instability.

In this paper, it is shown that, in general, a cantilever under a follower-end-Ioad may
lose stability by torsional buckling, transverse flutter, bending-torsional flutter, or bending
torsional buckling, depending on the parameters of the system; bending-torsional buckling
is precluded if no warping rigidity exists. Moreover, the critical-flutter-Ioad may be con
siderably reduced when the bar possesses some warping rigidity. The influence of the
internal dissipative forces on the flutter loads is also assessed [4-6].

2. FORMULATION OF PROBLEM

We consider a cantilevered prismatic thin-walled bar of length L that possesses two
axes of symmetry and is subjected at its free end to a compressive follower force P. The
force P acts on the axis of least moment of inertia, and remains tangent to the longitudinal
fiber at its point of application as the bar deforms (Fig. 1). We assume that the material
of the bar obeys a stress-strain relation of the Kelvin-type for both uniaxial and shear
deformations, i.e.

(j = Ef, +E'e, r = Gy+G'y, (1)
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§ Flutter is defined as oscillations with increasing amplitudes.
II Buckling or divergence is defined as attainment of another equilibrium state.
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FIG. I. Canlilever under an eccentric follower force.

where (J is the normal stress, r is the shear stress, E is the modulus of elasticity, G is the
shear modulus, and E' and G' are the coefficients of viscous damping forces. The dots in
(1) stand for partial differentiation with respect to time t, and t: and)' are the normal and
shear strains, respectively.

Using a system of right-handed rectangular Cartesian coordinates x, y, z, with origin
at the fixed end and the z-axis along the centroidal axis of the undeformed bar, we express
the strain energy V, the kinetic energy T, the work Wof the applied force P, and the energy
dissipation D of small bending-torsional vibrations of the bar as follows:

V = 1- SoL [Elu"2 + C'P'2 + C1'P"2] dz,

J
L

T = 1- 0 [mu' 2+mr2'P'2] dz,

W = ~IL

[U,2 + r2'P'2 - 2hu''P'] dz
2 0

-pI' [u'(L) - h'P'(L)] [u'(L)- h'P'(L)J dt,
'0

D = It JL [E'Iu"·2 +C''P''2 +C'l 'P"'2] dz dt,
'0 0

where u(z, t) and 'I'(z, t) denote, respectively, transverse displacement of the centroidal axis
and total rotation of the section at distance z at time t; I is the least moment of inertia,
m is mass-density per unit oflength, C is the torsional rigidity, and C 1 denotes the warping
rigidity of the bar. The force P is assumed to be acting at a distance h from the centroid,
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and r defines the radius ofgyration of the cross-section. The parameters C' and C't are given
by

C' = G'J,

where J is the polar moment of inertia, and Cw is the warping constant of the section [7, 8].
We now consider the total energy H at time t;

H = Ho+V+T+D-W, (2)

where H0 is a constant. We then require that, for the actual motion of the system, the
time-rate of change of total energy H vanish identically, yielding

dH = rL

{[Elu'''u'' +C\I"\I'" + Ct \1""\I'''J
dt Jo

+ [mu"u' +mr2\1"'\I'"J - P[u·,u' +r2\1"\I'" - hu"\I" - hU'\I"'J

+ [E'lu'" + C'\I""2 + C~ \I""J} dz+ P[u'(L)- h\l"(L)J [u'(L)- h\l"(L)J = O.

Using integration by parts, we reduce this equation to

dH = fL {uTElu'''''+mu''+E'lu'''''-Pu''+Ph\l'''J
dt 0

+ \l'TC't \1""" + Ct\1''''' + Pr2\I'" - C\I''' - C'\I"" -Phu" +mr2\1'''J} dz = 0 (3)

with the boundary conditions

u = \I' = u' = \1" = 0 at z = 0

u" = \1''' = u'" = 0 at z = L

[p(r2-h2)-C-C'~J\I" +(C +C' ~)\I'''' = 0 at z = L.ot t tot

We now note that the conservation law stated by (3) is unaltered if arbitrary uniform rigid
translation and rigid rotation are imposed on the system. Equation (3) thus yields

Elu"" +E'lu'"'' +Pu" -Ph\l''' +mu" = 0

C t \1''''' + C~ \1""" - C'\I"" + Pr2\1''' - C\I''' - Phu" + mr2\1''' = 0,

Introducing the following dimensionless quantities:

r = [::4J\
C1

f3 = EI£1'

h
rx = -,

r

b = E'(~)
E t '

_ C'(r)y ---
C t '

p£1
F=

El'

C
k = E1'

f3b - ~(~)- EIL2 t '
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(1+<5:t)~""+F~"-FO:P'P"= -t·

fJ( 1+ <5 :t) 'P"" + [Fp2 - k( 1+ <5 :t)] 'P" - Fpo:C = - p
2
'P"

(4)

with boundary conditions

~ = ~' = 'P = 'P' = 0 at ,= 0

~" = ~'" = 'P" = 0 at ,= I

[Fp2(l-o:2)-k(l+r:t)]'P'+fJ(I+<5:t)'P'" =0 at ,= 1,

(5)

where primes denote partial differentiation with respect to (, and dots stand for partial
derivatives with respect to r. We note that if damping forces are neglected, these equations
reduce to those obtained in [1] using Hamilton's principle. The present approach, similar
to that of [IJ, demonstrates the effectiveness of the energy method in deducing correct
field equations and boundary conditions when nonconservative forces are present (see [9J,
Section 73, for yet another point of view and other references).

3. STABILITY ANALYSIS

The solution of equation (4) may be taken as

8

~ = eirot L AjeAj~
j; 1

8

'P = eiWT
" A.Q ·eAj~i..J J) ,
j; 1

where i = (-l)!,

and )'j,j = 1,2, ... ,8, are the roots of the following characteristic equation:

fJ(l + iw<5f )"8 +(l + iw<5)[F(fJ +p2) - k(1+ iWr)JA.6

+ [F2p2(1- 0(
2

) - Fk(l + iwy) - w2(1 + iw<5)(p2 + fJ)JA. 4

- [2Fp2W2- w2k(l + iwr)]A.2 + p2W4 = O.

(6)

(7)

The solution (6) must satisfy the boundary conditions (5) which result in a set of eight linear
homogeneous equations for Aj' For non-trivial solutions, the determinant of the coefficients
of A j must be zero, yielding

f.I., v = 1,2, 3,4, (8)
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where the elements of A are defined as follows: We introduce the notation

UI = AI = -As,

U4 = A4 = -As,

and then obtain

Mil = (U3Shu3 - ulShud/R 3

M 12 = (U4Shu4 -utShu d/R4

M I3 = (U~ChU3 -uiChud/R3

M I4 = (U~ChU4 -uiChul )/R4

M ZI = (Q3U3Shu3 -QIUIShuI)/R3

M zz = (Q4U4Shu4 -Qlu IShud/R4

M Z3 = (Q3u~Chu3 - QluiChud/R3

M Z4 = (Q4uiChu4-QluiChud/R4

M 31 = (U~ChU3 -uiChul )/R3

M 32 = (U~ChU4 -uiChul )/R4

M 33 = (U~ShU3 -ufShud/R3

M 34 = (U~ShU4 -ufShul )/R4

M 41 = (K3Q3Chu3-K1QIChud/R3

M 4Z = (K4Q4Chu4-K1QIChud/R4

M 43 = (K3Q3U3Shu3-KIQIUIShud/R3

M 44 = (K4Q4U4Shu4 - KIQIUIShuI)/R4

PII = P12 = (uzShu z - ulShud/Rz

PI3 = PI4 = (u~Chuz - uiChul)/Rz

PZI = Pzz = (QzuzShuz-QluIShul)/Rz

PZ3 = PZ4 = (Qzu~ChUZ-Q1UiChut)/Rz

P31 = P3Z = (u~Chuz - uiChud/Rz

P33 = P34 = (u~Shuz -ufShul)/Rz

P41 = P4Z = (KzQzChuz - K IQI Chul)/Rz

P43 = P44 = (KzQzuzShuz-KtQluIShud/Rz·
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A. Divergence
The condition for divergent-type instability is obtained by setting (I) = 0 in (8). This

yields

(11)

(12)

where

For given values of p, p and k, we now seek the least value of F for which A vanishes
identically. It is readily seen that this is possible only for p~ ~ 0, from which we deduce
that

k
F 2 p2(1_(X2)"

Thus, bending-torsional buckling can occur only for 1X
2 < 1. The solid curve in Fig. 2 is

the plot of the critical-buckling-load obtained from (11) for p= 0,0005, k = 0'001, and
p = 0·02.
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FIG. 2. Critical values of load parameter F/n2 vs. the eccentricity parameter {l for p = 0'02, k = 0'001,
f3 = 0·0005 and indicated values of damping coefficients Ii and y.

The above results are valid only for non-zero values of IX. When IX = 0, only torsional
buckling and transverse flutter are possible. Flutter-type instability occurs for F 2 2'03n2

if no dissipation is present. To obtain the torsional-buckling-criterion, we set IX = 0 in
equation (4) and, neglecting the terms which depend on "t, obtain

with boundary conditions

'P ='P' =0 at ,= 0

'P" = (F p2_k)'Pt +p'P'" = 0 at ,= 1.

(13)

(14)
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(15)

F-;.

The solution of (13) now is

'P(O = B1( +Bz+B3 cos J(FK +B4 sin J(PK,

where B,ill = 1,2, 3,4) are constants, and F = (FpZ - k)/{3. Using boundary conditions
(14), we obtain the characteristic determinant ~l = J(P) cos J(p) and the following
expression for the critical-buckling-load in torsion:

{3n2/4+k
F = 2 •

P

Figure 3 shows various stability regions for IX = 0 and y = (j = O.
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FIG. 3. Stability regions for ex = 0, p = 0'02, P= 0·0005 and l' = b = O.

B. Flutter

The critical-flutter-Ioad is given by the smallest value of F for which the complex
valued determinant ~, defined by (8), vanishes for a real value of OJ. In actual calculations,
the values of k, y, (j, {3, and p are first fixed. Then, for various values of F and OJ, the roots
of the characteristic equation (7) are determined, and the following complex-valued
determinant is evaluated:

L\ = ~/(UI-UZ)(UI-U3)(UI-U4)(UZ-U3)(UZ-U4)(U3-U4)' (16)

where ul'{J1 = 1,2,3,4) are defined by (9). The function L\ rather than ~ is used, since L\
preserves its sign if, for example, Ul and Uz are interchanged. The least real values of F and
OJ for which both the real and imaginary parts of L\ vanish identically now define the flutter
load and frequency of the bar, respectively. As is well known, these quantities are highly
dependent upon the damping forces in the system. The dashed curve in Fig. 2 is the plot
of critical-flutter-Ioad without dissipation, while the one below the dashed curve corres
ponds to bending-torsional flutter when small internal damping forces are also present.
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The bending-torsional-flutter-Ioads for the bar with and without warping rigidity are
compared in Fig. 4. From this figure it is seen that warping rigidity can considerably reduce
the critical-flutter-Ioad of the system. It appears that this interesting result has not been
noticed before. (The dashed curves in Fig. 4 pertain to bending-torsional buckling
instability.)
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FIG. 4. Critical values of load parameter F/n2 vs. the eccentricity parameter ()( for p = 0,02, k = 0·001
and indicated values of fJ; (a) b = y 0, (b) b = y = 0·001.

We finally note that the values of the parameters used for the illustration, that is
f3 = 0,0005, k = 0'001, and p = 0'02, may be associated with a wide-flange beam of the
following dimensions: web thickness = 0'585, web height = 20, flange thickness 0-836,
flange width = 34, and length = 450, all being measured using an arbitrary unit of length;
the Poisson ratio is taken to be v = O'33.

3. RESULTS AND CONCLUSIONS

From the preceding analysis it is seen that a cantilever with warping rigidity, subjected
at its free end to a compressive follower force, may lose stability by either bending-torsional
buckling or bending-torsional flutter depending on the eccentricity of the applied load as
well as other parameters of the system (IX -:f. 0). For zero eccentricity, IX = 0, transverse
flutter or torsional buckling may occur. Moreover, the critical-flutter-Ioads are highly
dependent upon the damping parameters y and (j. The present study, therefore, is comple
mentary to the study of Lin et al. [IJ who neglected the effects of warping rigidity (thus
found no bending-torsional buckling) and internal damping forces. An interesting and
apparently new result of this study is that warping rigidity may have a destabilizing effect
in the bending-torsional flutter mode. Since in the analysis of bending-torsional flutter of
airplane wings warping rigidity is neglected, the present finding may have some bearing
on the disparity that is often found between the experimental and theoretical flutter studies
of wings [10].
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AOCTpaKT-l1cclle,1lyeTcli YCTOll.'1HBOCTh KOHconH no,n BnHlIHHeM cne,nllwero rpy3a Ha KOHlle. YKa3h1BaeTClI,
'ITO CTeplKeHh C HCKalKeHHoH lKecTKoCThlO TepaeT YCTOll.'1HBOCTh Bcne,nCTBHe H3rH6Horo KpyTlIwero
ql1laTTepa, H3rH6HorO-KpYTlIwero Bhmy'lHBamlll, norrepe'lHOrO qmaTTepa HnM KpyTllwero chmy'lHBaHce
KOTophle 3aBHCliT OT 3KlleHTpHCHTeMa HnH ,npymx rrapaMeTpOB. B Ka'leCTBe oco6oro clly'lall, Haxo,nHTClI,
'ITO Harpy3Ka H3nl6HorO-KpYTlIwero ql1laTTepa MOlKeT 6hITh 3Ha'lHTellhHO yMeHhweHa, Kor,na CTeplKeHh
06lla)),aeT HCKalKeHHOH lKeCTKocThlO. OlleHHBaeTCli TaKlKe BllHlIHHe BHyTpeHHhIX CHll )),eMnqmpoBaHHlI Ha
Harpy3Ky ql1laTTepa.


